PHYSICAL REVIEW B 78, 184104 (2008)

Modeling the plastic relaxation onset in realistic SiGe islands on Si(001)
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A detailed investigation of plastic relaxation onset in heteroepitaxial SiGe islands on Si(001) is presented.
The strain field induced by a straight misfit-dislocation segment is modeled by finite-element-method (FEM)
calculations in three dimensions, fully taking into account the interaction with the multifaceted free surfaces of
realistic islands. The total elastic energies before and after the placement of a 60° dislocation segment in the
most favorable position are therefore evaluated by a full FEM approach, for different island sizes and compo-
sitions. The critical volumes with composition for inserting the dislocation are finally obtained and successfully
compared with the data in a report by Marzegalli er al. [Phys. Rev. Lett. 99, 235505 (2007)], where experi-

mental values are compared to a simpler approach.

DOI: 10.1103/PhysRevB.78.184104

I. INTRODUCTION

Deposition of Ge on silicon substrates leads to Stranski-
Krastanow growth.! After the formation of a thin wetting
layer (WL), coherent three-dimensional (3D) islands>? start
forming, in order to release the elastic energy stored in the
film, originated by the 4.2% Ge-Si lattice mismatch.*> The
nanometric size of such 3D structures immediately attracted
considerable attention, in view of possible exploitation of
optoelectronic devices. While islands based on III-V semi-
conductor compounds are better suited for realistic applica-
tions, Ge/Si systems are widely explored because they pro-
vide a simpler (purely covalent, fully miscible) system for
the understanding of the complex physics involved in het-
eroepitaxial island formation and evolution. Recently, the
closely related behavior of Ge/Si vs III-V compounds was
nicely analyzed.®’

In-depth experimental analysis of Ge/Si islands revealed a
very fascinating physics, in particular for what concerns the
morphological evolution during deposition of the 3D struc-
tures. It is known that islands grown by molecular-beam ep-
itaxy (MBE) at common (500-800 °C) temperatures first
appear as prepyramids and (105) pyramids (shallower in
shape), and then as domes and barns (steeper morphologies,
involving multiple exposed facets).®!” This evolution can be
understood in simple thermodynamic terms. Islands with a
large height-to-base aspect ratio (p) allow for a better volu-
metric strain relaxation'*!! while involving a larger energy
cost in terms of extra exposed surface (with respect to a flat
WL). As a result, at small volumes islands are very shallow.
Indeed, the observed pyramids are only 0.1 in p.>® Following
the changes in terms of aspect ratio, e.g., for islands grown at
700 °C,10 4 rapid increase occurs with volume, and coherent
domes (p~0.2) and barns (p~0.3) are observed. Evolution
toward higher aspect ratios, however, is abruptly interrupted
by the opening of an alternative (plastic) channel for strain
relaxation. Misfit dislocations are eventually injected, deeply
influencing evolution at larger volumes. An intriguing cyclic-
growth regime is actually observed, involving a periodic flat-
tening of the island shape each time a new dislocation nucle-
ates in the island,'>!3 generating an average decrease in p,
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back to about 0.25-0.27 (superdome islands'#). This drop in
the aspect ratio is nicely highlighted also in Ref. 15, for
samples grown by chemical-vapor deposition (CVD).

The issues influencing the critical size for plastic relax-
ation onset are the shape and the intermixing of the deposited
Ge, with Si popping up from the substrate, which has been
shown to decrease the Ge content with increasing growth
temperatures, both in CVD (Ref. 15) and MBE growths.'®!7
Since alloying contributes to strain reduction, by lowering
the effective lattice misfit, it competes with plastic
relaxation,'®  effectively  delaying the  dislocation
nucleation.'? Interestingly, the same kind of effect (lowering
of the effective misfit and delaying of the dislocation injec-
tion) was recently observed for growth on suitably pit-
patterned substrates.?’

In a recent letter,'” we compared quite satisfactorily the
experimental critical size for the onset of plastic relaxation in
epitaxial SiGe islands on Si(001) of different compositions
with our predictions based on a simple model. The latter was
based on the partition of the total energy for an island with
one dislocation segment into two contributions: the energy
gain with respect to the lattice misfit, provided by the effec-
tive component of the Burgers vector for a 60° dislocation,
and the energy cost originated by the additional lattice defor-
mation due to the dislocation itself.?! The first contribution
was calculated using the Peach and Koehler force?>?* de-
scribing the elastic interaction between the dislocation and
the stress field of the coherent island, as calculated by finite-
element method (FEM). The second contribution, i.e., the
elastic self-energy of the dislocation segment, was analyti-
cally calculated as for a bulk SiGe lattice with no misfit
strain. In particular, it was considered a cylindrical portion of
the island as large as the geometric average of the distances
between the nearest free surfaces and the dislocation posi-
tion. This term is clearly approximated, but no sufficiently
simple alternatives were available, at least for the complex
shape provided by realistic SiGe islands.

In this paper we outline an improved strategy based on
incorporating the stress field produced by a dislocation seg-
ment straightforwardly into the FEM simulation of the total
elastic field in the SiGe islands with the free surfaces. By
developing a suitable script for a commercial FEM package

©2008 The American Physical Society


http://dx.doi.org/10.1103/PhysRevB.78.184104

GATTI et al.

(STRUCTURAL MECHANICS module of COMSOL MULTIPHYS-
ICS), we are able to obtain in one time a virtually exact treat-
ment of the fully converged elastic field of the dislocation-
misfit segment and the one in the SiGe island with the free
surfaces. We believe this strategy to be particularly valuable
for any calculation of plastic relaxation, also in strained
nanostructures, such as the ones obtained by state-of-the-art
top-down lithography for microelectronic applications. The
case of SiGe dislocated islands on Si(001) is however par-
ticularly interesting, as the presence of complex multifaceted
free surfaces delimiting the nanosystem leads to a nontrivial
modulation of the elastic field that cannot be predicted using
simple analytical approach. In addition to that, due to the flat
nature of the islands, the threading arms of the dislocation
are understood to play a minor role with respect to a bulk
system or a thick film, so that a model based purely on misfit
segments is well suited.

The paper is organized as follows. In Sec. II we shall
describe how we treated the plastic relaxation in the FEM
framework, briefly overviewing alternative approaches. The
reader more interested in results than in methodology can
skip this section and go to Sec. III, which is devoted to an
in-depth analysis of the strain and stress field within a real-
istic island, in the presence of a 60° misfit-dislocation seg-
ment. Here, results obtained with the FEM-based methodol-
ogy in Sec. II are compared with large-scale atomistic
calculations. In Sec. IV, the problem of calculating the criti-
cal volume for dislocation injection is tackled by using three
different approaches: the original one in Sec. II, the Peach
and Koehler method applied in Ref. 19, and a simpler ana-
Iytical model usually applied to flat film, particularly useful
in interpreting the differences between a thin film and a flat
island. Finally, a direct comparison with the experimental
data of Ref. 19 is presented in Sec. V, while Sec. VI summa-
rizes our main results.

II. OUTLINE OF THE METHOD

Many different strategies have been developed for ap-
proaching defected structures. Atomistic simulations can be
carried out in order to obtain atomic configurations around
dislocation lines, core geometries, and energies (e.g., Refs.
24-28). A long computational time is however required so
that, for instance, the simulation of dislocated island, despite
the nanometer scale, can be performed only for idealized,
prototypical cases (an example will be given in Sec. III).

An analytical approach is therefore highly desirable. The
unavoidable consequent loss in the description of the core
regions, when realistic structures are modeled, does not in-
fluence the calculation of mechanical properties because of
their small extensions. Classical dislocation theory,?! even if
it remains the touchstone of all the tried analytical ap-
proaches, fails in managing complex three-dimensional
structures with multiple surfaces and interfaces. Most of the
models proposed in literature are developed considering dis-
locations described by analytical infinite-domain solutions
and correction terms (image stresses) tackling surface and
interface interactions, generally approximated by empirical
or analytical formulas valid for simple boundary

PHYSICAL REVIEW B 78, 184104 (2008)

geometries.”’ We propose a continuum-based approach ex-
ploiting the capability of numerical calculations to handle the
interactions between dislocations and surfaces, as described
in the following.

Let us consider first the general case of the calculation of
the stress field due to a dislocation segment in a finite struc-
ture where no other sources of the elastic field are present.
Classical elasticity theory describes the equilibrium state of a
solid in terms of internal stresses o',-j(u), as a function of the
displacement field u with respect to the initial position, and
external applied forces f;. Defining the body as the domain
), with boundary d€), equilibrium equations can be written

in a partial-differential-equation (PDE) problem as

,
3

> i‘fi_,‘[u(x’)”l)] =f; if (x,y,2) € Q

j=1 %

{ 3
E} ojlu(x,y,z)]n;=0
J:

\”i(x,y’Z) = 0

if (x,y,2) € dQy, i=1,2,3

if (x,y,z) € dQp,
(1)

where d{)y are free-surface boundaries, (), are the fixed
ones, and n is the vector normal to d{)y. The finite-element
method allows the numerical solving of equation system (1)
so that by assigning the proper conditions it is possible to
find the elastic field in any domain.

We conceived the use of the FEM calculation starting
from the stress field of a dislocation segment in an infinite
body and using the solver to find the solution that satisfies
also the finite-body boundary conditions for free surfaces
and interfaces. In particular, an external function is used in
communicating to the FEM code the analytic stress tensor
cr?j-“l"(u) (i,j=1,2,3) produced by a dislocation segment in a
bulk.?! Then, we replace in Eq. (1) oy(u) with o;;(u)
+o'g(u), where o-f}(u):a?j‘S'O(u) (i,j=1,2,3). The proper
PDE problem is then solved also where no external forces
are considered (f;=0). When convergence is reached, the so-
lution for o7;(u) is found and the total stress tensor o}'(u)
can be written as

oW =W + oW + oW, @

where ofj‘-‘rf(u) is the correction to o;;(u) due to the interac-
tion between the dislocation and free surfaces [i.e., due to the
first boundary condition in Eq. (1)], while a‘l‘;t(u) is the one
due to the interaction between the extended defect and the
interface (i.e., due to internal boundaries among different
materials).3"

The whole procedure has to be carried out taking into
consideration that the bulk solution o'?j.“l"(u) (i,j=1,2,3) is
singular along the dislocation line, so that some technical
requirements for the FEM calculation are needed. A first ob-
vious condition is that the mesh used to solve the PDE sys-
tem must not contain nodes exactly along the dislocation
line; otherwise, infinite values would be introduced. In addi-
tion, a sufficiently dense mesh must be defined close to the
core region, where the stress field reaches high values, also
in derivative. This second key requirement can be fulfilled
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following a geometrical construction which also allows the
quantitative estimates of the elastic energy in a dislocated
structure. A small cylinder has been built around the disloca-
tion line and we define a very dense array of nodes within it.

We set the radius as |b|/ @ with @=2.71. Excluding only such
small cylinder (about 1.5 A in radius) in the elastic-energy
calculation, the core contribution is empirically included
(see, e.g., Refs. 21, 31, and 32). Notice that the definition of
a suitable grid, as the one described above, is straightforward
within several available FEM packages. Meshes, indeed, can
be automatically generated by the codes, at variable levels of
node density, based solely on the geometry of the objects
composing the system. By introducing the very small cylin-
der explicitly, one automatically forces the mesh generator to
introduce several nodes around the core region, as it was
desired. However, a careful control of convergence as a func-
tion of the mesh density is mandatory. All the results pre-
sented in this paper were checked in terms of stability of the
stress field and of the elastic energy, finding that data are
converged when meshes containing more than 10° nodes are
used. A detailed description of the dependence of the results
on the mesh choice will be presented elsewhere.

To give a simple example of the flexibility and the accu-
racy of the method, we illustrate a case study where a direct
comparison with the exact analytical solution is possible. Let

us consider a dislocation with Burgers vector b and disloca-

tion line [/ parallel to a single, horizontal free surface (placed
at x=0). While for pure screw character the exact solution is
provided by a simple image method,?! it is more interesting
to consider an edge dislocation. In this case, the problem is
more complex, but it was nicely solved by Head,?* who sup-
plied a solution valid for any distance d between the dislo-
cation line and the surface, in the case of Burgers vectors
perpendicular to the free surface. The Head solution, in terms
of various components of the stress tensor, is shown in the
three upper panels of Fig. 1, while our results obtained by
using FEM are displayed in the three lower ones. It is evi-
dent that a very good match is found. Outside the small
cylinder around the dislocation line, indeed, the two solu-
tions always differ by less than 0.1% of the stress value.
Notice the stress-field behavior close to the surface: while
the o, and o, stress components (parallel to the normal )
vanish, o, does not, at variance with the (wrong) result that
one would obtain by using the approximated-image
method.?! It is therefore clear that our method is suitable for
handling dislocations in the presence of free surfaces. Due to
the requirement in terms of mesh density, a significant com-
puter memory (up to 8 Gbyte for the results in Secs. III and
IV) is needed to obtain stable results. Until a couple of years
ago, this would have prevented similar calculations, so that
smart attempts to circumvent the problem were proposed,
avoiding dealing with the singularity directly in a FEM cal-
culations. A particularly general and valid approach was in-
troduced by Johnson and Freund** (JF), similar ideas being
contained also in Ref. 27. JF proposed to suitably split the
elastic problem into two subproblems. First, using the known
analytical expression for 0'?;51", tractions are computed at
each free surfaces (components of the stress tensor normal to
the surface itself). Then, a FEM calculation is performed for
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FIG. 1. (Color online) Panels (a)-(c): Various components of the

edge dislocation stress field (5:[100], 1 =[001]) near a (100) sur-
face (black line), calculated using the analytical solution by Head
(Ref. 33). The dislocation is placed at a distance of 6 nm from the
surface. Panels (d)-(f): Corresponding results obtained by direct
solution of the elastic problem by FEM.

the system without dislocation, but using such tractions (op-
posite in sign) as boundary conditions. The bulk stress field
03-‘310 is finally superimposed. In this way, the problem of
using very dense meshes while solving the elastic problem is
bypassed.

Recently, another possible approach has been
presented.?®3%35 With respect to the JF method, no explicit
analytical expressions for ¢*'° and no JE-type problem split-
ting are required. This extended FEM methodology seems
very promising for treating systems containing several dislo-
cations. However, some ad hoc technical FEM machinery
needs to be implemented.

While the above methods are surely valid alternatives (we
verified the perfect correspondence between our results and
the JF approach for a simple test case) and might still prove
to be essential for treating an elevated number of cores at the
same time (a situation not encountered in this case'?), our
direct treatment of the dislocation field within FEM approach
has some appealing features. First, it can be very easily
implemented also within commercial FEM codes, where
original sources are usually not available. A similar extension
to use the method of Refs. 28, 30, and 35 does not seem
straightforward. With respect to the JF method, on the other
hand, one does not need to explicitly compute tractions. If
their calculation poses no problems for simple geometries,
for multifaceted heteroepitaxial islands one would need to
carefully define the normal to each different exposed surface.
In addition, if islands of different shapes need to be consid-
ered and compared, our direct approach allows one to move
from one geometry to another very easily, particularly if the
simple object-drawing features provided by most modern
FEM packages are exploited.

In this section we have demonstrated that an accurate,
direct solution of the elastic problem posed by a straight
dislocation segment in the presence of free surfaces can be
obtained directly by FEM. Let us now apply this methodol-
ogy to realistic heteroepitaxial islands.
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FIG. 2. (Color online) Hydrostatic (upper panels) and shear
(bottom panels) stress components mapped in a central barn section.
The left panels show the case of a coherent 35-nm-based island,
while the right panels show the same system when a 60° dislocation
is introduced.

III. MODELING OF THE DISLOCATED ISLAND

Before the onset of plastic relaxation, the elastic field in
the island is completely determined by its shape and
composition.!! Indeed the lattice mismatch between Si and
Ge [(age—asg;)/asi~4.2%, ag. and ag; being the Ge and Si
lattice parameters] generates a strained state of SiGe struc-
tures epitaxially grown on a Si substrate. In the 3D island
configuration, free surfaces allow for a partial strain relax-
ation. Moreover a redistribution of the elastic energy be-
tween island and substrate occurs, giving rise to a strong
modulation of the elastic field, depending on the actual facet
number, extension, and inclination.*!! In this section we de-
scribe first how such field can be computed via FEM, with
reference to the general PDE problem as written in Eq. (1).

The geometric details (actually the domain () have to be
fixed, for both the 3D island and the Si substrate (shapes,
orientation, and dimensions). Then, the proper boundary con-
dition over d€) has to be imposed. We fixed the bottom of the
substrate (u=0), letting free the island surfaces. In Eq. (1)
we replace o;;(u) with a',-j(u)+0'?j(u) (i,j=1,2,3), where
0'2: 0,,6;; in the island, reproducing the hydrostatic compres-
sion, as obtained directly from the lattice mismatch between
the SiGe dot and the Si substrate (e.g., 0,,~-8.6 GPa for
pure Ge), and 0'?1:0 in the substrate. A proper mesh is gen-
erated (it is particularly important to use a high number of
nodes close to the island edges, where the solution is singu-
lar). The FEM solver calculates then the proper solution cor-
responding to the equilibrium state of the modeled system,
obtaining the stress field in the elastically relaxed SiGe dot
and in the substrate. In Fig. 2, left panels, we show the color
maps for the hydrostatic stress and for a shear component of
the stress tensor as obtained by FEM calculation when a pure
Ge barn-shaped island®!'? has been constructed. The hydro-
static stress maps reveal a strong compression taking place
close to the island bottom edges while a base-to-top progres-
sive relaxation is observed. The Si substrate below the is-
land, on the other hand, experiences a tensile stress. This
behavior was already observed in several papers, with the
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quantitative details depending on the actual island shape. We
can state that FEM is a suitable method for computing fast
and accurately elastic properties in nanoscale system, as
largely described in Ref. 11.

Let us move to the dislocated-island case. We shall recall
that the calculation of the complex elastic field in a dislo-
cated dot is the actual goal of our FEM methodology, and
that the results here reported are a complete description of
stress and strain field in realistically shaped 3D islands.

In Ref. 19 it was addressed that the onset of plastic relax-
ation in SiGe islands grown on a Si(001) substrate occurs in
barn-shaped islands. We followed this suggestion and ad-
dressed the dislocated dots to be a barn. Moreover as in Ref.
19, we focused on perfect straight 60° dislocation segments
(typical of Si and Ge diamond structure), the case of partial
dislocations (30°-90° partials+stacking fault) often re-
ported in literature (e.g., in Ref. 36) turning out to be more
complex and will not be analyzed here. Different island com-
positions and sizes have been considered, along with differ-
ent dislocation positions at the island-substrate interface (see
Sec. V).

In Sec. IT we described the procedure for calculating via
FEM the elastic field in a finite system where the stresses are
originated only by the presence of a dislocation segment. In
one dislocated island, both the elastic field due to lattice
misfit with the substrate and the one due to the dislocation
are present instead. The superposition principle holding for
linear system [as the one described in Eq. (1)] allows us to
simply sum the two initial stresses O'?j(ll) for one unique PDE
problem. Therefore in Eq. (1) o;;(u) becomes o-l-j(u)+(r?j(u)
(i,j=1,2,3), with

oi(w) = 0,8+ 05"°(u) SiGe barn

0 disl
O'l-j(ll) = O'[J'IS 0(“)

A3)

Si substrate.

In particular, we choose to orient the dislocation line [ along
the [110] direction (here and in the following the direction of

the x axis, the z axis being along [001] and y along [110]),

and we take the Burgers vector b=(ag./2)[011]. Then the
relative analytic stress tensor O'?j‘SIO(u) is obtained as in Ref.
21 for a dislocation segment actually starting on one side of
the island and ending at the opposite one. We neglect the
presence of threading arms and we place the dislocation seg-
ment always at the interface with the substrate. Both simpli-
fications find their physical reason in a realistic picture of the
dislocation evolution after its nucleation: the misfit segment
has to be elongated as much as possible, in order to maxi-
mize the strain release, so that the threading arms have to
become as short as possible and the dislocation has to move
toward the interface.

Results for a pure Ge dislocated barn are plotted in right
panels of Fig. 2, allowing for a close comparison with the
coherent case (left panels). The island base was realistically
set to 35 nm.'®!° Notice the importance of specifying the
islands’ dimensions. The coherent case is self-similar, so that
the stress field can be scaled to represent any island of the
same shape. This is not possible anymore when a dislocation
is considered since the Burgers vector introduces an intrinsic
length scale. The dislocation was placed exactly at the inter-
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FIG. 3. (Color online) Elastic field in a 3D dislocated barn.
Panels report color maps of the oy, component for different island
cross sections, along the dislocation line. The cross sections in the
island are shown in the top left panel, along with a sketch of dislo-
cation line and Burgers vector orientation.

face at a relative distance of about 0.3 from the closest barn
edge with respect to the island base, i.e., in the position that
in Ref. 19 was indicated to be the lowest in total energy (as
reported in Sec. IV we found exactly the same result).

Looking at the hydrostatic components o, (upper panels
in the figure), it can be observed how the presence of the
dislocation allows for a strong reduction in the compression
at the island edge closer to the core, i.e., exactly where the
elastic relaxation does not provide a good way for lowering
the stress load arising from the lattice mismatch. The influ-
ence on the Si substrate is also interesting. Below the dislo-
cation core, a compressive lobe is created. While this causes
strong negative stress values right below the core, at larger
distances it allows for a reduction in the tensile Si region. A
detailed, quantitative analysis of the overall contribution to
the total energy, allowing for an estimate of the critical vol-
ume for dislocation injection, will be presented in Secs. IV
and V. The components o, illustrated in the bottom panels
of Fig. 2 give an example on the local modification induced
by the 60° dislocation segment in reducing the shear defor-
mation.

Proceeding with the analysis of the dislocation-induced
stress field in the barn, in Fig. 3 we show the o, component
of the stress field at different positions within the island. We
find the comparison between the various panels of Fig. 3
particularly appealing since it clarifies the complex interac-
tion between the dislocation and the various island facets,
highlighting the importance of performing actual three-
dimensional calculations. The overall stress field is deter-
mined by several factors. Beside the position-dependent
lattice-mismatch contribution, the relative position with re-
spect to both the dislocation line and the free surfaces is
important, together with the relative orientation of the Bur-
gers vector (shown separately in the figure) and of the nor-
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FIG. 4. (Color online) Left panel: Dome island as built in MD
code. The facets are indicated and the {111} planes mostly involved
in the initial deformation have been highlighted in color. Right
panel: Sketch of the atomistic generation of the dislocation, z, being
the interface level.

mal to the closer facet. In the cross section in Fig. 3(a), one
observes a strong dislocation contribution reaching the free
surface (upper left corner in the panel). In that region the
dislocation core is very close to a free surface and, more
importantly, the Burgers vector is almost normal to the facet.
In cross section displayed in Fig. 3(e), the Burgers vector is
instead parallel to the surface, causing a weaker relaxation
close to the surface (orange area). Finally, in the central sec-
tions of the island [panels (b)-(d)], the typical butterfly-
shaped dislocation stress field is observed to become less
significant while moving from the base to the top, where the
elastic relaxation is maximum.

As a further confirmation of the method’s accuracy, we
chose to compare the elastic field of a dislocated island as
found by our full FEM methodology with the same result
calculated via atomistic simulations. We compare our results
with molecular-dynamics (MD) ones based on the Tersoff
empirical potential.’”-3® This comparison also allows for ana-
lyzing atomic-scale effects, which are not present in the con-
tinuum approach. Instead of a barn, we here consider a dome
island® (see Fig. 4) since this allows us to reduce the number
of atoms to be considered, still dealing with realistically
sized and shaped islands. In order to introduce a 60° dislo-
cation segment in the island analogous to the one previously
treated by FEM, we applied the same procedure successfully
used in Refs. 39 and 40 for the simpler case of a flat film. In
particular, we chose to induce the dislocation in the shuffle
set (in elastic-continuum calculations the dislocation setting
is not relevant as no lattice is present). Briefly, a specific
{111} glide plane is selected, together with the vertical posi-
tion for the dislocation core. Suitably modulated rigid shears
are applied above the core position: atoms on one side of the
glide plane are sheared in the direction of the Burgers vector,
while atoms at the other side are moved in the opposite one.
In the left panel of Fig. 4 the island as built up in the MD
code is shown from top view. The atomic planes mostly in-
volved in the displacements are highlighted. The right panel
of Fig. 4 contains a sketch of the procedure used to generate
the dislocation.

After the preparation of the initial configuration, a simu-
lated annealing procedure was run in order to minimize the
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FIG. 5. (Color online) 60° dislocation in a dome island as ob-
tained via atomistic simulation. The core position is encircled. Core
atoms and the half extra plane are highlighted. The detailed atom-
istic configuration is shown in the right panel.

total energy in the dislocated configuration, reaching a tem-
perature of 400 K before bringing the system down to zero
temperature. The applied initial displacement is sufficient to
guarantee that the minimization procedure causes only minor
atomic arrangement around the induced dislocation core, dis-
allowing the system to get back to the perfect-crystal con-
figuration. During the simulation, periodic boundary condi-
tions were applied in the directions parallel to the substrate,
and the bottom four layers of the supercell were kept frozen
to bulk position. The total system was composed of =1.5
X 10° atoms. 58 layers were used to describe the Si substrate,
each of them composed of ~21 600 atoms, completed by a 3
ML Ge wetting layer and by the dome island, made of about
118 000 Ge atoms.

Figure 5 presents a portion of the final configuration,
highlighting the presence of a 60° shuffle dislocation seg-
ment at the island base. The core structure is shown in the
right panel.

The same dome island*' has been then constructed in the
FEM code and a 60° dislocation has been introduced in the
same position. In order to draw a closer comparison, we used
the elastic constants predicted by the Tersoff potentials.*#
Panels in Fig. 6 show the color maps of the hydrostatic strain
resulting from the two approaches. The good qualitative and
quantitative correspondence is evident.

An obvious difference is seen close to the free surfaces,
the steep dome facets being here stepped in their as-cut con-
figuration. Each step is a source of alternating compressive
and tensile regions, this effect being absent in the FEM cal-
culation. Notice that the step-induced effect seen in the MD
results is doubtfully realistic since reconstructions (unknown
for the high-index facets of a dome) are expected to change
the surface stresses. Moreover, the top (001) dome facet also
is built up in the MD code without introducing possible re-
construction; random rebonding in dimers occurs during the
simulated annealing, giving rise to local stresses.

Overall, the FEM approach, while recovering the correct
result, allowed for a 2-orders-of-magnitude saving in compu-
tational time for this prototypical case. Estimating the critical
volume for plastic relaxation (particularly at low Ge con-
tents, yielding larger islands) by MD is prohibitive, so that in
the following we shall drop the atomistic approach.
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FIG. 6. (Color online) Color maps of the hydrostatic strain in
the central cross section of a 3D dome island (32 nm in base) as
obtained by FEM calculations (upper panel) and Tersoff-potential
MD (bottom panel).

IV. ONSET OF PLASTIC RELAXATION IN EPITAXIAL
SiGe ISLANDS

In Sec. III we have demonstrated that FEM calculations
can yield a reliable description of the elastic field in a dislo-
cated island. Before exploiting them to yield an accurate es-
timation of the critical volume for plastic relaxation onset,
we find it interesting to introduce two more approximated
(still analytic) approaches, in order to compare the different
predictions and to understand which are the key contribu-
tions determining the system behavior.

On general grounds, the total elastic energy stored in a
heteroepitaxial island in the presence of a dislocation can be
written as

Etot = Ecoh + Egain + Ecost» (4)

where E,, is the elastic energy of the coherent dot; Eyp,
accounts for the energy lowering corresponding to the effec-
tive misfit reduction, provided by the dislocation; and E; is
the energy of the additional lattice deformation produced by
the defect. Different approaches can yield an explicit expres-
sion for the three terms contained in Eq. (4), at different
levels of approximation.

A. Dislocation-position-independent model: Islands as effective
thin films

A simple approach consists of using position-independent
model (PIM) for the dislocation, commonly adopted in lit-
erature for the calculation of the critical thickness in films,
and recently applied also for 3D GaAs islands.*? Let us con-
sider, first, the elastic energy stored in the island (E.,,) be-
fore the onset of plastic relaxation.

In a SiGe film grown on Si(001), the lattice mismatch
causes a compression on the growth plane and an expansion
in the vertical direction. In particular, denoting the misfit as
f=—(asige—asi)/ asig. and referring to the axis as stated in
Sec. III, a tetragonal strain described by e,,=¢,,=f and &,
=—[v/(1-v)](s,,+€,,) arises in the film. Relating to that
case, the elastic strain energy in a 3D coherent island can be
formulated as
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TABLE 1. Relaxation function F,(p) values for different island
shapes and height-to-base aspect ratios, as calculated by FEM.

Shape Aspect ratio F.(p)
105 pyramid 0.1 0.68
Dome 0.2 0.39
Barn 0.33 0.22
_ ¢ 2+2 : 5
Ecoh - Fv(p)(exx + stxsyy + Syy) V’ ( )

1-v

where G is the shear modulus and v is the Poisson ratio, V
the island volume, while the factor F,(p) (named relaxation
function, p being the aspect ratio) accounts for the energy
reduction in the island, with respect to the film, due to the
elastic relaxation. It is important to notice that Eq. (5) takes
into account only the energy stored in the island, neglecting
the contributions arising from the substrate elastic deforma-
tion (at variance with the other presented models as will be
discussed in Sec. IV C). We numerically evaluated the relax-
ation function (using FEM) as F,(p)=W_,/ Wop. That is, we
computed the ratio between the elastic-energy density (W)
in a coherent island, obtained as described in Sec. III, and the
one in a biaxially strained two-dimensional (2D) layer con-
structed on the same substrate. The values of F,(p) for dif-
ferent island shapes are reported in Table I. While the relax-
ation function mainly depends on the aspect ratio, there is
also a weak dependence on the detailed shape. Regardless of
this issue, high aspect ratios provide better strain relaxation'!
and therefore lower values of F,(p).

Upon the formation of a misfit dislocation with disloca-

tion line [/ oriented along the x axis, the strain component
&=/ remains unchanged, whereas the perpendicular one is
reduced to &,,=f—¢g,, where g, is that part of the misfit ac-
commodated by the projection in the growth plane of the
Burgers vector edge component (b.g). By analogy with a 2D
layer, &, can be simply calculated as &,=b.g\/(77r?), in the
case of a circular-based island,** which is a suitable approxi-
mation for the barn basis. Here r is the island base radius and
\ is the length of the dislocation line.

The PIM approach assumes that the energy contribution
of dislocation can be estimated by a suitable average over
different dislocation positions. For instance, the dislocation
length is provided by the average extension of island along
the x direction, A=(7/2)r.*> Thus, the energy associated
with the misfit-relaxed 3D island containing one dislocation
can be written as

Enen= 7= FOf + 201 = 0 + (= )1V (©

Therefore the energy gain due to the misfit-dislocation for-
mation is

Egain = Eincoh — Econ- (7)

Let us now consider the expression for E. In bulk systems,
dislocation theory?'*? provides the following expression for
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FIG. 7. Schematic representation of a barnlike island (solid
line), which is approximated in the PIM calculation by a cylinder
(dashed line) of equal base size L=2r and volume. The cylinder
height is chosen as the cut-off radius R.

the energy stored in a cylinder of radius R around the dislo-
cation line:

G(1 - v cos’B)b? aR
47(1-v) n b’ ®

Ecoe=N
where B is the angle between dislocation line and Burgers
vector; « is the parameter which describes the energy of the
dislocation core already introduced in Sec. II, set equal to 2.7
as in Ref. 42; and b is the length of the Burgers vector. For
finite system, the role of the free surfaces in reducing the
extension of the dislocation elastic field (see, e.g., Fig. 1) is
commonly enclosed in the analytical model using a suitable
choice of R as a cut-off radius of the dislocation self-field
(e.g., in Ref. 42). We set, following the PIM view, R as the
average distance between the interface and the free island
facets. Considering again the barn as a 3D circular-based
island of the same aspect ratio, R is given by

R =V/(mr). )

Figure 7 helps in understanding the geometric meaning of all
the parameters.

B. Peach-Koehler approach

A more detailed procedure has to take into consideration
the actual (position-dependent) interaction between the dis-
location and the inhomogeneous elastic field of the island,
before the onset of plastic relaxation. A combination of FEM
calculations and dislocation theory provides a viable way.

The misfit reduction due to the presence of a dislocation
can be viewed as the interaction between the strain field in
the island and the dislocation Burgers vector: such an inter-
action depends, obviously, on the dislocation position. In de-
tails, the stress in the island, 6(x,y,z), exerts a force [Peach-

Koehler (PK) force] dﬁ:g-&(x,y,z)xdi on each

infinitesimal segment of the dislocation line (di), b being the
relative Burgers vector, moving the dislocation segment to
the position maximizing strain relaxation in the island. The
position-dependent energy gain term can be modeled as the
work due to place a dislocation segment from outside the
island into any position.?>?3

Our results are referred to a 60° dislocation segment run-
ning along the x-axis direction ([110]) and with b
=(agige/2)[011]. The work performed by the Peach-Koehler
force to place that segment from the outer of the island in
any position (yy,z,) reads
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h(yp:20)
Egain(y07Z0) = b)J f O'yydx dz
Z(,VQ,Z)

20

h()’o;ZQ)
+sz (f oy.dx |dz |, (10)
Z(,VQ,Z)

20

where h(yg,z) is the distance of the (yy,zy) position from
the free surface along z, and I(y,,z) is the dislocation line
length along x, which depends on z. Finally, b, and b, rep-

resent the components of the Burgers vector in the y ([110])
and in the z ([001]) directions, respectively. We recall that
the integral of the Peach-Koehler force starting from the sur-
face (energy E=0) is path independent if the stress field is
calculated at the equilibrium, so that it is possible and con-
venient to calculate E,,, along a straight vertical path, from
the surface to the most favorable position in the island (al-
ways along the interface with the substrate).

Let us consider now the E. term. We use the analytical
formulation of Eq. (8), still taking R as a function of the
dislocation position. In particular R is defined as the geomet-
ric average of the distances of the dislocation position from
the base edge and the free surface above, as calculated in the
middle cross section of the island. The limits of such ap-
proximation will be highlighted upon comparison with the
full FEM results.

C. Comparison between different approaches

Figure 8 reports the three contributions Ecoy, Eg,n, and
E, as calculated in the case of a pure Ge barn (basis L
=35 nm) by the proposed full FEM methodology (Sec. II),
by the PIM model, and by the PK approach. Actually, E, is
shown in the third panel of Fig. 8 after subtraction of the
corresponding coherent energy E.., so that positive (or
negative) values indicate an overall energetic increase (or
decrease) provided by the presence of the dislocation.

The calculation of the individual energy terms in the full
FEM approach is done as follows. After the equilibrium con-
dition is found, the FEM code provides the stress and strain
fields, so that the total elastic energy in a volume V can be
computed by the well-known relation

1
=3 (O x8rx + Oyy8yy + 0,8 + 20,8,
1%

+20,,8,, +20,8,)dV. (11)

By integrating over the whole system volume, one would
include in E the (wrong) contribution coming from the core
region. We therefore integrate everywhere but for the small
cylinder built around the core (see Sec. II). This yields the
total elastic energy E,.** Following the definition, E is
actually given by the elastic energy in the zero-misfit island,
when only the dislocation is present, so that E,,;, can be
directly computed by subtraction.

The comparison of the E terms shown in the first panel
of Fig. 8 clearly reveals some limitations of the PK treat-
ment, where the influence of free surfaces on the dislocation
field is described only by the introduction of a cut-off radius
R related to the island geometry. An immediate consequence

PHYSICAL REVIEW B 78, 184104 (2008)

800

600

400 |/ \

Energy cost (eV)

s | full FEM —— ]

0 . . . . .
0.1 02 03 04 05 06 07 08 09

Relative distance from edge

full FEM ——

-200

-400 Y

Energy gain (eV)

-600

-800 . . . . . . . .
0.1 02 03 04 05 06 07 08 09

Relative distance from edge

400

L full FEM ——

240 | PIM e

320

160

80 K

Total energy (eV)

0.1 02 03 04 05 06 07 08 09
Relative distance from edge

FIG. 8. Comparison between full FEM, PK, and PIM results for
a barn island with base L=35 nm. The first panel reports the values
of Eo. the middle panel those of E,,;,, and the bottom panel those
of E\y.

is that the PK curve is symmetric, merely reflecting the barn
geometry, while the full FEM curve correctly shows a behav-
ior determined by the dependence of the elastic field on the
relative orientation of the different surfaces and the Burgers
vector. Since at the two opposite island edges the facet nor-
mal is differently oriented, a different E . must be expected.
The effect of the relative-orientation-dependent elastic field
revealed by full FEM is particularly important in nanometric
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FIG. 9. (Color online) Color maps of the hydrostatic stress in

different cross sections of the barn cut along the dislocation line (i),
Shown in the upper panel is the analytical dislocation segment bulk
solution qfi,szlo(u) (cut following the barn shape). The defect is lo-
cated in the position corresponding to the E, minimum. The central
and the lower panels describe only the dislocation-surface interac-
tion [a';‘;,‘;f(u)+ o";;i(u)] the former refers to the same position of the
upper panel, and the latter to a symmetric position on the other
island side.

multifaceted island, where the dislocation line turns to be
always close to a free surfaces; it is investigated here in
detail.

In Fig. 9 the role played by the free surfaces (and the
interface) is made clear by plotting the difference between
the hydrostatic stresses for the equilibrium solution when
only the dislocation segment is present and the dislocation
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analytical bulk solution (reported in the upper panel).?! That

tot

is, following the definitions in Sec. II, Fig. 9 shows o\, _(u)

—Uji,szlo(u)=oi;rzf(u)+o‘icnvlz(u). The middle panel displays the
behavior obtained by placing the dislocation at the position
corresponding to the minimum of the E,, curve and the
lower one reports the data obtained when the dislocation is in
a symmetric position on the other island side. Notice that the
U;‘:,f(u)+a';;fz(u) actually reduces the dislocation field (upper
panel), being opposite in sign. Indeed the E_, found in the
PK approach results higher with respect to the full FEM one
because of the too simple approximation used for the surface
contribution that corresponds to a simple geometric cutoff of
the dislocation field. The comparison between the middle
and the bottom panels highlights the dislocation-position de-
pendence of the surface terms that gives rise to the asymme-
try in the full FEM E_ curve. From Fig. 9 we conclude also
that no significant effect seems to be present due to the Ge/Si
interface at the bottom of the island [o‘j(';tz(u); see Sec. II)
mainly because of the very similar values of the elastic con-
stants of the two materials.

Let us now focus our attention on the E,;, term, reported
in the central panel of Fig. 8. Actually, the Peach-Koehler
force is shown to yield a good qualitative description of the
interaction between the dislocation field and the epitaxial
one. Indeed, the use of the FEM-computed elastic field in the
island before the onset of the plastic relaxation in the PK
expressions guarantees a correct estimation of the energy re-
duction obtained when a dislocation is introduced. Very im-
portantly, the PK and full FEM curves present the minimum
at the same position along the interface (~0.3), so the two
models predict the same equilibrium dislocation position. It
is important to notice that such position, maximum in the
energy reduction, actually corresponds to a strong release of
the island edge compression due to the expansive lobe of the
dislocation field (see upper right panel of Fig. 2). From the
quantitative point of view, the energy gain seems to be over-
estimated instead by the PK approach. Since the same behav-
ior was found for E,. (opposite in sign), the total-energy
curve is expected to benefit from this compensation. Indeed,
by looking at the bottom panel of Fig. 8, one sees that full
FEM and PK give very close results in the central region. It
is evident, instead, the failure of the PK-based approach
when the dislocation is in the proximity of the island edge
closer to E,,, minimum position. Notice that such minimum
for the full FEM calculation corresponds to O eV. This is
because the comparison reported in this section was per-
formed exactly at the full FEM critical volume for disloca-
tion introduction. Section V is dedicated to a more detailed
investigation of critical volumes, including a comparison to
Ge concentration-dependent experimental data.

Up to now we have focused our attention on the compari-
son between the full FEM and PK results since they allowed
for a detailed analysis of position-dependent energy contri-
butions. Still the three panels of Fig. 8 also report the result
predicted by the simplest PIM approach. It is evident that the
E . term value is strongly underestimated when compared
with the corresponding values obtained by the two other
methods at the position which maximizes strain relaxation.
Evidently, the strongly simplified description of the effective
cutoff used by PIM is not sufficient to reproduce the real
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effect of free surfaces on the dislocation field in the island.
Moreover, the expression of E,,, described as the simple
misfit reduction in the island, turns out to be an underestima-
tion of the real energy gain. Mainly, as revealed, for instance,
by looking at Fig. 3, the dislocation field plays an important
role also in the reduction in the substrate expansion below
the island, due to the elastic relaxation. This contribution to
the energy gain is completely absent in the PIM approach
[while it is taken into account in the PK one by the use of the
FEM calculated &(x,y,z) in the . expression]. However,
a compensation effect similar to the one observed for the PK
approach is taking place, but in this case the deviation of E,
from the full FEM value is still relevant.

V. PREDICTION OF THE CRITICAL SIZE VERSUS
EXPERIMENTS

A useful and interesting application of the methods de-
scribed above is the calculation of the critical island dimen-
sion for the onset of plastic relaxation. Such calculation has
already been published in the Peach-Koehler framework for
SiGe islands'® and in a PIM approach for the GaAs one.*?
Here we compare the PK results with the one obtained using
the more accurate full FEM approach and the simplest PIM
one. Critical volumes V. are defined as the smaller island
dimensions where there exists at least one dislocation posi-
tion where E,,in=—FE.. Clearly, finding V¢ requires calcu-
lating the two terms for different island sizes and, except for
the PIM approach, for different dislocation positions along
the interface. If in Secs. II-IV we simply considered pure Ge
islands, here we wish to carry out the calculations at realistic
Ge compositions. We considered values ranging between
20% and 70% as determined in Ref. 19 by using different
growth temperatures. In the FEM calculations, alloying can
be tackled by considering a rescaled misfit stress (and a
correspondingly smaller f in the PIM approach), o,
=—-8.6xg. GPa, where xg. is the Ge content, and also lin-
early interpolated elastic constants [C,SjiGe(xGe)=xGecge+(l
—xGe)CiSjl]. Results, obtained by full FEM, PK, and PIM are
displayed in Fig. 10, along with the experimental data of Ref.
19. With respect to that work, here only the data where the
concentration values were determined by independent and
more accurate x-ray measurements are shown. In the plot,
the vertical axis represent the barn critical island base, ex-
perimentally estimated by looking at the internal plateau re-
gions revealed by selective etching.!® Let us first focus on
the three models.

While the three theoretical curves all capture the essential
physics (higher Ge concentrations determine larger elastic-
energy accumulation, and, therefore, smaller critical vol-
umes), a closer comparison reveals once again the different
levels of approximation, with full FEM yielding a virtually
exact description. The sizable underestimation of the E_.
term in the PIM approach, as expected, yields too small criti-
cal sizes, a similar behavior being displayed also by the PK
method, where we have noticed some overestimation in the
energy gain. Interestingly, despite the approximations dis-
cussed in Sec. IV, critical island dimensions predicted by the
PK method, as well as by the extremely simple PIM, do not
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FIG. 10. Critical island bases as calculated by the three pre-
sented methods and compared with the experimental data of Ref.
19.

deviate substantially from the full FEM results, particularly
if one takes into account the large experimental uncertainties
on the actual Ge content. However, it is well visible that the
most accurate full FEM approach better recovers the data.
Overall, the agreement between the latter and experiments is
very satisfactory and reinforces the main conclusion of Ref.
19: dislocation injection in nanometric island is not kineti-
cally limited all along the concentration (and, thus, the tem-
perature) range, at variance to the flat film case.

As a final investigation, we carried out a comparison be-
tween the thermodynamic critical heights in islands and in
flat films. Using only the FEM approach, the critical heights
h. determining dislocation injection in films have been deter-
mined for the same concentration values previously consid-
ered for the barns, together with the pure Ge case. It may
appear of limited interest to investigate the very Ge-rich
case, where flat films can be grown only by freezing the
surface atomistic diffusion [i.e., using a high H concentration
in plasma-enhanced chemical-vapor deposition (PECVD)
growth]. Still, in this case A, is very small, and the role of the
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FIG. 11. Critical thickness for flat films (dashed line), as com-
pared to the barn island height (solid line), both calculated by full
FEM.
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surfaces is much larger and the one of threading arms is
much smaller. In Fig. 11, A, is compared with the corre-
sponding height of barn islands at the critical volume. It is
evident that from the thermodynamic point of view, higher
structures can be reached before the onset of plastic relax-
ation in a three-dimensional growth with respect to the two-
dimensional one, the effect being particularly pronounced at
low misfit values. The result is easily understood in the sim-
pler PIM picture: the function F,(p) is equal to 1 for flat film,
giving rise to a larger energy gain with respect to islands
where F,(p) <1, so that the latter critical dimensions have to
be higher. However, at variance with islands, measured val-
ues for critical films seem much higher than the thermody-
namic predictions,>>* highlighting a key role of the kinetic
barriers opposing the dislocation nucleation in films.

VI. CONCLUSIONS

In this work a detailed investigation of the effects of plas-
ticity at the onset of dislocation injection in heteroepitaxial
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SiGe islands on Si has been presented. A virtually exact FEM
treatment has been used to investigate several dislocation-
position-dependent features of the stress field, and to esti-
mate critical volumes for realistic 3D islands. Two other ap-
proaches, based on different levels of approximations, were
also applied to the same problem. Their comparison provides
valuable insights into the role played by dislocation-surface
interaction in a multifaceted object, correctly described by
FEM. Theoretical results were compared with available ex-
perimental data, finding very satisfactory agreement and
demonstrating the predicting power of a thermodynamic
approach to plasticity onset, at variance with the two-
dimensional thin-film case.
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tional cost in the FEM calculations by placing the island directly
on the Si substrate. We also checked that neglecting the WL does
not produce any significant variation in the critical volume for
dislocation insertion.

42K. Tillmann and A. Forster, Thin Solid Films 368, 93 (2000).
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4 As discussed when describing the PK and the MF approaches,
the presence of free surfaces causes a faster decay of the dislo-
cation field. This allowed us to find converged values of E,
considering relatively thin substrates. For the results reported in
Sec. 1V, a Si substrate thickness of 2000 nm turned out to be
more than sufficient.
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